Computing a Diameter-Constrained Minimum Spanning Tree in Parallel
نویسندگان
چکیده
A minimum spanning tree (MST) with a small diameter is required in numerous practical situations. It is needed, for example, in distributed mutual exclusion algorithms in order to minimize the number of messages communicated among processors per critical section. The DiameterConstrained MST (DCMST) problem can be stated as follows: given an undirected, edge-weighted graph G with n nodes and a positive integer k, find a spanning tree with the smallest weight among all spanning trees of G which contain no path with more than k edges. This problem is known to be NPcomplete, for all values of k; 4 ≤ k ≤ (n − 2). Therefore, one has to depend on heuristics and live with approximate solutions. In this paper, we explore two heuristics for the DCMST problem: First, we present a one-time-treeconstruction algorithm that constructs a DCMST in a modified greedy fashion, employing a heuristic for selecting edges to be added to the tree at each stage of the tree construction. This algorithm is fast and easily parallelizable. It is particularly suited when the specified values for k are small—independent of n. The second algorithm starts with an unconstrained MST and iteratively refines it by replacing edges, one by one, in long paths until there is no path left with more than k edges. This heuristic was found to be better suited for larger values of k. We discuss convergence, relative merits, and parallel implementation of these heuristics on the MasPar MP-1 — a massively parallel SIMD machine with 8192 processors. Our extensive empirical study shows that the two heuristics produce good solutions for a wide variety of inputs.
منابع مشابه
Referências Bibliográficas
[1] Abdalla, A. M. Computing a diameter-constrained minimum spanning tree. Computational methods for the diameter restricted minimum weight spanning tree problem. create time-to-target plots.mon, G. MALLBA: A software library to design efficient optimisation algorithms .
متن کاملConstraint Programming for the Diameter Constrained Minimum Spanning Tree Problem
Given an undirected connected graph G = (V,E) with a set V of vertices, a set E of edges, and costs cij associated to every edge [i, j] ∈ E, with i < j, the Diameter Minimum Spanning Tree Problem (DCMST) consists in finding a minimum spanning tree T = (V,E ), with E ′ ⊆ E, where the diameter required does not exceed a given positive integer value D, where 2 ≤ D ≤ |V | − 1. The diameter of a tre...
متن کاملRandom-tree Diameter and the Diameter-constrained MST
A minimum spanning tree (MST) with a small diameter is required in numerous practical situations. It is needed, for example, in distributed mutual exclusion algorithms in order to minimize the number of messages communicated among processors per critical section. Understanding the behavior of tree diameter is useful, for example, in determining an upper bound on the expected number of links bet...
متن کاملModeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs
The Hop-Constrained Minimum Spanning Tree Problem (HMSTP) is a NP-hard problem arising in the design of centralized telecommunication networks with quality of service constraints. We show that the HMSTP is equivalent to a Steiner Tree Problem (STP) in an adequate layered graph. We prove that the directed cut formulation for the STP defined in the layered graph, dominates (in terms of the linear...
متن کاملFast Heuristics for Large Instances of the Euclidean Bounded Diameter Minimum Spanning Tree Problem
Given a connected, undirected graph G = (V, E) on n = |V | vertices, an integer bound D ≥ 2 and non-zero edge weights associated with each edge e ∈ E, a bounded diameter minimum spanning tree (BDMST) on G is defined as a spanning tree T⊆ E on G of minimum edge cost w(T) =∑w(e), ∀ e∈ T and tree diameter no greater than D. The Euclidean BDMST Problem aims to find the minimum cost BDMST on graphs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000